

Project Background and Description for Lake St. Martin Outlet Channel

May 9, 2019

Workshop 1: EIS Status

Presentation Outline

- 1. Project Background (LMB & LSM projects)
- 2. Lake St. Martin Outlet Channel Project
 - Description
 - Design status
 - Design considerations
 - Associated activities and field investigations

Emergency Reduction of LMB/LSM WL

- Range of options and alignments considered
- Construction of LSM Emergency Channel (Reach 1&3)

Post 2011 Flood

- 2011 flood triggered multiple provincial initiatives:
 - 2011 Flood Review Task Force & LMB/LSM Regulation Review Committee
 - Both studies made specific recommendations for permanent additional outlet capacity from LMB/LSM
 - Assiniboine River and Lake Manitoba Basins Flood Mitigation Study

AR and LMB Basins Flood Mitigation Study

- 3-year study which considered entirety of both Lake Manitoba and Assiniboine River basins
- Scope included:
 - Identification of major flood vulnerabilities
 - Hydrologic and hydraulic analyses
 - Development of flood protection measures
 - Cost estimates and economic analyses
 - Environmental & socio-economic considerations (screening)
 - Public open house events in Dauphin, Brandon & Portage la Prairie
 - June 2013 & Dec 2014

AR and LMB Basins Flood Mitigation Study

Over 70 potential options considered

- Large Dams
- Small Dams
- Diversion Outlet Channels
- ▲ Others (e.g. Dikes, Control Structures, Individual flood proofing...)

LMB/LSM Outlet Channel Conceptual Design

- Stage 1 study completed in conjunction with AR&LMB Basins Flood Mitigation Study
- Stage 1 goal: refine outlet options for both lakes
 - Considerations to work completed during 2011 flood
 - Development of screening level designs and cost estimates
 - Economic Assessment
 - Initial identification of potential environmental concerns

Lake Manitoba Outlet (Stage 1 Study)

- 6 alignment options considered
- Range in flows from 0 to 15,000 cfs
- Options C & D
 preferred based on
 cost and
 environmental
 rankings

LEGEND

- Combined Control Structure and PTH Bridge
- Municipal Road & Control Structure
- Municipal Road Bridge

Lake St. Martin Outlet (Stage 1 Study)

- 2 alignment options considered for LSM
 - Both through Big Buffalo Lake wetland/bog
- Range in flows from (4000 to 19 000 cfs)
- Both options ranked similarly – WP option tentatively preferred for socio-economic reasons

Key Recommendations of Flood Mitigation Study

- Expansion of the outlet works at LMB & LSM
- Enhancement of Lower
 Assiniboine River Dikes
- Expansion of PortageDiversion

Stage 2 Conceptual Design

- Advancement of conceptual design based on conclusion of Stage 1 study
- Supplemental field investigations
- Environmental screening
- Conceptual cost estimates and schedule
- Additional open house event (Ashern Sept. 2014)

Lake Manitoba Outlet (Stage 2 Study)

- Refinement of alignments
- Key issue:
 - Risks associated with potential groundwater impacts on Route C

Lake St. Martin Outlet (Stage 2 Study)

- Refinement of alignments
- Key Issue
 - Risks associated with water flowing over bog area and surrounding Big Buffalo Lake (plugging due to floating peat)

Preliminary Engineering for LMB Options C&D

- Scope of work included:
 - Drilling and monitoring program
 - Groundwater study
 - Surface water study
 - Geotechnical investigations and analyses
 - Risk Assessment

Preliminary Engineering for LMB Options C&D

Evaluation Process:

- Technical workshop
- Weighting of criteria and rating of options
- Suitability of the options in meeting project objectives
- Performance of one option relative to the other

- Option D scored highest and identified as preferred option
 - Groundwater impacts and risks were the major factors

Preliminary Engineering for LMB Options C&D

- Based stakeholder input, additional Option "G" considered
- Concluded to have similar concerns to Option C

Preliminary Design of Reach 2 of the LSMOC

Scope of work included:

- Field Investigations
- Constructability
- Operational risks
- Environmental comparison
- Maintenance and inspection
- Cost Estimates
- Evaluation of options
- Preliminary Design

Preliminary Design of Reach 2 of the LSMOC

- Evaluation Process:
 - Technical workshop
 - Weighting of criteria and rating of options
- Option 4 scored highest and identified as preferred option
 - Risks associated with Big Buffalo lake wetland complex was the major factor (Options 1&2 not preferred)
 - Constructability, O&M, costs (Option 4 over Option 3)
 - Repurpose or decommission Reach 1

Lake St. Martin Outlet Channel Project

Lake St. Martin Outlet Channel Description

- Design continues to evolve
- Alignment is fixed
- Profile being updated
- Number, location & type of drop structures under review
- WCS location may change

Channel Profile (Current Status)

Channel Profile (Current Status)

Standing Water in Channel (min. 1m depth)

- Minimizes potential for fish kill due to ice growth and anoxic conditions (need base flow) for stranded fish.
- Reduces extents of channel side slopes exposed to risk of poor vegetation growth due to prolonged wet/dry cycles.
- Minimizes potential risk of extensive vegetation growth in channel base that could reduce channel capacity.
- Minimizes potential for damage to drop structures and channel erosion due to ice growth in winter.

Drop Structures

- Rockfill structure (D₅₀~400mm)
- U/S fish passage not a design requirement
- Notch included at crest to promote D/S fish passage
- Alternate options under considerations (e.g. concrete vertical drop structure)
- Considerations to winter flows and operating guidelines

~10H:1V Scale

~10H:1V Scale

Typical Cross Section

Spoil pile size and position may vary

~10H:1V Scale

Spoil pile size and position may vary

~10H:1V Scale

Surface Water Drainage

- Outside drain to be included on east side
- Discharge into channel at predetermined locations
- Extents of peat drainage will vary
- Drainage requirements on west side under review

- Concept design sketch
- Currently studying configuration and hoist type
- Similar structure on LMOC

Inlet Works

- Design ongoing
- Lakebed excavation required to achieve design capacity
- Studying shoreline processes
 - stable environment

Outlet Works

- Design ongoing
 - minimize footprint
- Studying shoreline processes
 - dynamic environment
- Key considerations:
 - potential for erosion
 - potential for sedimentation
 - impacts to shoreline geomorphology
 - Design storm / water level

Completed Field Investigations

Pre 2019 data:

- 700+ peat probes
- ~50 hand augers
- ~50 test holes
- ~120 test pits
- ~25 km seismic
- LiDAR
- Bathymetry
- Surveys

Completed Field Investigations

2019 winter investigations:

- 19 test hole locations
- 3 channel pump wells
- 1 sentinel well at DRFN
- 8 test pits
- Seismic surveys (7.4 km)
- Topographic surveys

Lab Testing (In progress)

- Water Quality Routine inorganic, dissolved metals, stable isotope and low range tritium.
- Soils M/C, Atterberg, Grain Size Analysis, Standard Proctor, Direct Shear

Preliminary Stratigraphic Profile

Groundwater

- Reach 3 channel bedrock exposed during emergency channel construction in 2012
 - Result: drop in bedrock piezometric pressure; there is seepage baseflow
- Reach 3 is a bedrock aquifer discharge area channel design goals:
 - Maintain condition
 - Mitigate increasing pressures due to elevated flood stage profiles

Estimated Bedrock Piezometric Pressure

Rock Availability Assessment

SE-25-31-06W1

NE-24-31-06W1

SW-30-31-05W

Former MI

 Studying quality/quantity of rock available for riprap

Alternate sites under consideration

2018 Sigfusson Northern

Former Munro

Camp Site

Quarry Location

Various testing ongoing

Upcoming Spring/Summer Field Activities

- Rock Availability (inspection, monitoring & drilling)
- Shoreline Morphology (inspection, bathy. & substrates)
- Groundwater monitoring and sampling (multiple sites along channel alignment)
- Sentinel well installation & monitoring (Dauphin River)
- Revegetation surveys and investigations (see next slides)
- Fairford river and Dauphin River flow systems survey (tentative see next slides)
- Weather station (tentative)

Revegetation Surveys

- Base survey:
 - Vegetation types / unique species & landscape
 - Sources of plant material
 - Soil conditions
- Revegetation field trials
 - Evaluate vegetation performance under various controlled conditions
 - Strengthen confidence in the revegetation design
 - Multiple plots to test varying seed mixes and soil amendments

Fairford River and Dauphin River Flow System

 Outlet Channels will alter the flow regime of the Dauphin / Fairford Rivers.

Fairford River and Dauphin River Flow System

- Phased surveys to support modelling and assessments
 - fluvial geomorphology
 - water retention times
 - river ice processes

